

Organic Donor (conduction electron) Transition Metal Complex (magnetic moment)

 π -d system is interesting because...

Foundation of molecular devices

For example

conductivity controlled by magnetic field magnetization controlled by current

New strong correlated system

Organic strong correlated systems have made progress of material science. Creating new such system is effective way to develop the material science.

For the purpose, we used following donor and anions.

Halogenated TTF-type donors show strong attractive interaction between the halogen atom of the donor and halogen of acceptors[†]. Therefor, short donor-anion contacts are easily realized! FeBr₄⁻ and GaBr₄⁻

The sizes of these anions are quite similar, while magnetic moments of FeBr_4^- and GaBr_4^- are S = 5/2 and S = 0, respectively. Therefore, we can investigate the effect of π -d interaction by comparing the salt of two kind of anions.

[†]Imakubo, T., Sawa, H. and Kato, R. (1995).

2.Structure

Donor-Anion Br-Br3.66 Å (short)3.67 Å (short)Br : 1.95 Å

- Short donor-anion contact
- Long anion-anion distance

Magnetic interaction may be mainly caused by π -d interaction

3. ESR and SQUID Results of Ga salt

4. Resistivity of Ga salt (1 || a)

•Resistivity increases below 140 K •M-I transition temperature $T_{\rm MI} \sim T_1$ in ESR result of Ga salt •Activation energy has anomaly at magnetic order temperature T_2 which estimated from ESR data.

5. Electronic structure of Ga salt

Three Anomalies of Ga salt

$T \sim 140 \text{ K}$

Below this temperature, resistivity increases.

 $T_1 \sim 70 \text{ K}$

 ΔH_{pp} changes at the temperature, and below T_1 , χ becomes constant M-I transition temperature.

 $T_2 \sim 13 \text{ K}$

 $\Delta H_{\rm pp}$ and *g*-value increase below 20 K, and they diverge at about 13 K. Shoulder of $\Delta \ln(\rho/\Omega \text{cm}) / \Delta(1/\text{T})$

Despite long anion-anion distances, T_N is surprisingly high.

Strong π **-d interaction is suggested!**

7. Resistivity of Fe salt (/ || a)

•Anomaly at T_N indicates π -d interaction! • T_{MI} is lower than that of Ga salt, and it is same as magnetic order temperature of Ga salt.

8. Electronic structure of Fe salt

Three Anomalies of Fe salt

There is no transition at 60 K ($T_{\rm MI}$ of Ga salt)

 $T \sim 40 \mathrm{K}$

Below this temperature, resistivity increases.

 $T_{\rm MI} \sim 20 \ {\rm K}$

M-I transition temperature.

Same as Magnetic ordering temperature of Ga salt.

 \Rightarrow Fe salt also has magnetic ordered insulating π -system?

 $T_{\rm N}$ ~11 K

Antiferromagnetic (AF) transition temperature of Fe³⁺ ion. Additional increase of resistivity (π -d interaction)

No charge ordering transition?

Can electrons move through *d*-orbital of Fe³⁺ ions? (cf. Ga³⁺: $(e_g)^4(t_{2g})^6$ closed shell, Fe³⁺ : $(e_g)^2(t_{2g})^3$ open shell) Increase of path may increase the dimensionality of the system, and metallic state becomes more stable.

Large negative MR (Fe)
Anomaly at spin flop field (Fe)
Weak positive MR (Ga)Ev
Strong 7

Evidences of Strong π **-d interaction!**

10. Origin of large negative magnetoresistance

Strong π -d interaction Magnetic ordered π -system (suggested)

Expected magnetic structure

Combined Magnetic System

Period of AF anion is equal to Nesting vector of π-system

AF anions enhance the gap of magnetic ordered π-system

High magnetic field region

Enhancement of gap disappears.

Large Negative MR

Brominated donor

\Longrightarrow Short donor-anion distances

 \Rightarrow Strong π -d interaction! -

Negative MR High T_N of FeBr₄⁻

Phase Diagram

