

 $\pi$ -d system is interesting because...

#### Foundation of molecular devices

For example conductivity controlled by magnetic field magnetization controlled by current

#### New strong correlated system

Organic strong correlated systems have made progress of material science. Creating new such system is effective way to develop the material science.

#### Typical π-d systems

- Antiferromagnetic Metal
- Antiferromagnetic Semiconductor

#### Ferromagnetic $\pi$ -d systems are rare.

# It is exciting challenge to create Ferromagnetic Metal!

For the purpose, we use following molecules.



DIEDO

lodine-bonded donors form coordination-bond-like strong interaction between the iodo group of the donor and cyano group or halogen of acceptors<sup>†</sup>. Therefor, strong  $\pi$ -d interaction through short contacts between donor and anion is expected.

<sup>†</sup>Imakubo, T., Sawa, H. and Kato, R. (1995).



M(mnt)<sub>2</sub> (M=Ni,Pt) These anions have localized magnetic moment S=1/2 and some salts of these anions show ferromagnetic interaction. In addition, these anion have cyano group. Consequently, strong  $\pi$ -d interaction is expected with DIEDO.

# **2.Experimental**

X-ray analysis Resistivity (ambient and high pressure) Magnetic susceptibility EPR spectrum

# **3.Structure**



|                     | M=Ni     | M=Pt      |
|---------------------|----------|-----------|
| Space               |          | _         |
| Group               | P1       |           |
| a (Å)               | 13.99(3) | 14.077(3) |
| b (Å)               | 16.67(4) | 16.698(5) |
| c (Å)               | 4.18(1)  | 4.1580(9) |
| α (°)               | 98.4(1)  | 96.51(2)  |
| β (°)               | 91.3(1)  | 91.43(2)  |
| <b>y</b> (°)        | 74.34(3) | 73.77(2)  |
| V (Å <sup>3</sup> ) | 929(2)   | 932.3(4)  |
| R                   | 0.108    | 0.0288    |

|               | <i>r</i> <sub>1</sub> (N-I), Å | <i>r</i> <sub>2</sub> (N-I), Å | <i>r</i> <sub>3</sub> (S-S), Å |
|---------------|--------------------------------|--------------------------------|--------------------------------|
| van der Waals | 3.65                           | 3.65                           | 3.70                           |
| M=Ni          | 3.04                           | 3.50                           | 3.54                           |
| M=Pt          | 3.05                           | 3.54                           | 3.49                           |

- 1D-chain structure of donor and anion
- Strong CN-I interaction causes short S-S contact between donor and anion (*r*<sub>3</sub>).

# 4. Overlap Integral



|      | <i>p</i> (10 <sup>-3</sup> ) | <i>q</i> (10 <sup>-3</sup> ) | <i>r</i> (10 <sup>-3</sup> ) | s (10 <sup>-3</sup> ) |
|------|------------------------------|------------------------------|------------------------------|-----------------------|
| M=Ni | 16.3                         | 3.26                         | 6.54                         | 0.43                  |
| M=Pt | 16.7                         | 3.00                         | 6.44                         | 0.78                  |

#### Donor: 1D-3/4 filled band => 1D-metal

#### Anion : 1D-S=1/2 magnetic chain. Quite small overlap between SOMOs of adjacent anions.

## **5.Resistivity at ambient pressure**



| What's | the | origin | of | M-I |
|--------|-----|--------|----|-----|
|--------|-----|--------|----|-----|

X-ray oscillation photographs (16K-300K)

Neither significant superlattice reflection nor discontinuous change in the lattice constant is observed.

#### SDW or 4K<sub>F</sub> CDW is suggested

# 6.Resistivity at high pressure



One dimensionality is kept at high pressure because donor chains are sandwiched between anion chains.

M-I transition is not suppressed by





### **No magnetic transition**



Natural consequence of 1D Heisenberg spin system

# 8.Magnetic susceptibility of Pt salt



#### **1D ferromagnetic Ising spin system**

- Ising spin (large anisotropy)
  Due to large spin-orbit interaction of Pt
- Ferromagnetic behavior (*T*>7K) Intrachain strong ferromagnetic interaction (*J*~22K)
- Antiferromagnetic transition (*T*<sub>N</sub>=5.5K) Weak interchain antiferromagnetic interaction. Large magnetic anisotropy enhance the role of inter chain dipole-dipole interaction.

#### **Magnetization curve of Pt salt**



Metamagnetic transition field  $H_{MM} \sim 0.15T$  $\Box$  Inter chain interaction  $J_{inter} \sim -0.06K$ 

J<sub>inter</sub> is comparable to the contribution of the dipole-dipole interaction.

# Hysteresis loop at low field

# 9.Spin structure of Pt salt

#### Intra chain

**Inter chain** 





**Ferromagnetic** (*J*~+22K) **Antierromagnetic** (dipole-dipole, *J* ~-0.06K)

### **10.Origin of ferromagnetic interaction**

There are two important factors to explain the origin of ferromagnetic interaction.

- Small overlap between SOMOs
- McConell's first model
- 1. Quite small overlap between SOMOs

Generally, overlap between SOMOs causes antiferromagnetic interaction.



Therefore, quite small overlap between SOMOs of anions causes quite weak antiferromagnetic interaction.

# 2. McConell's first model



#### **11.EPR spectrum**

Only one broad peak was observed.



EPR spectrum suggests strong π-d interaction

# (DIEDO)<sub>2</sub>M(mnt)<sub>2</sub> Organic Metal with Ferromagnetic Interaction

|                        | M=Ni                                                                                            | M=Pt                                                                                                 |  |
|------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|
| Conductivity           | 1D-Metal<br>M-I transition (SDW or 4 <i>K</i> <sub>F</sub><br>CDW) <i>T</i> <sub>M-I</sub> ~90K |                                                                                                      |  |
| Magnetic<br>Properties | 1D-Ferromagnetic                                                                                | <b>1D-Ferromagnetic</b><br>(high temperature)<br>Antiferromagnetic<br>( <i>T</i> <sub>N</sub> =5.5K) |  |
| Spin<br>Character      | Heisenberg                                                                                      | Ising                                                                                                |  |