

Controlling Interchain Interaction in Weak-Ferromagnet $[CrCyclam(C \equiv C-MeEDT-TTF)_{3}](Anion)_{3}(Solvent1)(Solvent2)_{3}$ Junichi Nishijo (Meisei University)

1. Introduction

Weak Ferromagnets [CrCyclam(C \equiv C-MeEDT-TTF),](Anion),(MeCN)(PhCl), $(Anion = [BF_{A}]^{-}, [CO_{A}]^{-})$ J. Nishijo et al., *Inorg. Chem.*, **50**, 3464-3470 (2011).

3. Structural change and magnetism

Effect of the anion size

Effect of the solvent size

Larger solvent brings not only a longer *c*-axis, but also a small rotation of $[1]^{2+}$.

> As a result, larger solvent indicates shorter inter-chain distance. (solvent size: PhI > PhBr > PhCl > PhF)

interchain S-S contact

Magnetic properties

- High transition temperature ($T_{\rm N} \sim 23$ K)
- There are two unsolved questions:
 - •What is the origin of the weak ferromagnetism? •The remanet magnetization of the $[ClO_4]^-$ salt is about twice that of the $[BF_{4}]^{-1}$ salt. Why?
- To answer these questions, 8 isostructural crystals were investigated, where inter-chain interaction was controlled by the solvent and anion substitution.

2. Experimental

Crystal preparation: electrochemical oxidation of [1]⁺ Solvent: acetonitrile + PhX (X = F, Cl, Br, I) Anion: $[BF_{4}]^{-}$, $[ClO_{4}]^{-}$, $[ReO_{4}]^{-}$

Obtained crystal: [1][Anion], (Solvent1) (Solvent2), For PhX = PhF and PhCl

Origin of the weak ferromagnetism

The results can be explained by assuming that the weak ferromagnetism is originated from a single ion anisotropy.

Observed spin easy acis

shorter interchain

stronger interaction \rightarrow more collinear

Solvent1 = acetonitrile, Solvent2 = PhX

For PhX = PhBr and PhI

Solvent1 = Solvent2 = PhX

Obtained crystals and their inter-chain S-S distances

	PhF	PhCl	PhBr	PhI
[BF ₄] ⁻	√ 3.959 Å	✓ 3.827 Å	low quality	low quality
[CIO ₄] ⁻	√ 3.997 Å	√ 3.854 Å	√ 3.813 Å	√ 3.803 Å
[ReO ₄] ⁻	no crystal	√ 3.911 Å	√ 3.898 Å	low quality

Controlling the Interchain exchange interaction of weak ferromagnet [**1**](Anion)₂(Solvent1)(Solvent2)₂ was achieved.

The transition temperature increases as the inter-chain interaction increases, while the remanent magnetization decreases remarkably.

The results indicate that

the origin of the weak ferromagnetism is single-ion anisotropy of [1]²⁺.