1.Introduction

Molecular magnets

- Anisotropic interaction
 - Low dimensionality, frustrated system
- Designability of molecules
 - Controllability of magnetic interactions

We used the following two transition metal complexes

 $M(9S3)_2^{2+}$ (M = Ni,Co)

- •9\$3 = 1,4,7- trithiacyclononane
- Octahedral coordination complex
- S = 1 (M=Ni) or S = 1/2 (M=Co)
- Strong inter-molecular interaction through sulfur atom of 9S3

Ni(bdt)₂

- bdt = 1,2-benzenedithiolate
- S = 1/2
- Anisotropic interaction
 Strong: through sulfur atom
 Weak: through benzene ring

2.Crystal Structure

Cage-like structure (in (a+c)-(a+b) plane)

S-S contact $r_A = 3.77$ Å Strong interaction

CH-S contact $r_{\rm B} = 3.75 \text{Å}$ Weak interaction

Inter-plane stacking

S-S contact $r_{\rm C} = 3.78 \text{\AA}$ Strong interaction

CH-S contact $r_D = 3.98\text{Å}$ Weak interaction

3. Magnetic Susceptibility (M=Ni)

 χ of $H \parallel x$ and y increase at 6K < T <

Caused by intra-chain ordering of Ni(9S3)₂²⁺-Ni(bdt)2⁻ ferrimagnetic chain

Ferrimagnetic Structure

Below $T_N = 5.8K$, weak inter-chain interactions causes antiferromagnetic transition.

4. Magnetization Curve (M=Ni)

Weak-ferromagnetism (H // y)

Remanent magnetization: 0.2 $\mu_{\rm B}$

Coercive force: 200 Oe

5. Magnetic Susceptibility (M=Co)

No remarkable increase above T_N was observed.

In the case of Co, there is no ferrimagnetic structure.

6.Magnetization Curve (M=Co)

Quite weak weak-ferromagnetism ($H \parallel y$) Remanent magnetization: 0.01 μ_B Coercive force: 10 Oe

This weakening of weak-ferromagnetism suggests Interaction between M(9S3)₂²⁺ and Ni(bdt)₂⁻ or

Ferrimagnetic chain structure plays important role in weak-ferromagnetism.

7.Origin of Weak-Ferromagnetism

First, we consider about the Ni salt.

The salt consists of two magnetic chains.

Judging from the crystal structure, $|J_A|$, $|J_C| >> |J_C| > |J_D|$

In plane magnetic structure

Considering about inter-plane interactions

To decrease the competition, spins cant

Weak-ferromagnetism appears

In the case of Co (S=1/2) salt

- ferrimagnetic structure disappears
 - □ Chains #1 don't show weak-ferromagnetism
- •#1 #1 inter-chain interaction (J_D) weaken
 - **□** Canting angle decreases

Only canting of chains #2 contribute weak-ferromagnetism

Quite weak Weak-Ferromagnetism

Summary

New weak-ferromagnet M(9S3)₂[Ni(bdt)₂]₂

M=Ni

Transition temperature $T_{\rm N} = 5.8$ K Weiss temperature $\Theta = -6.5$ K Coercive foerce $H_{\rm C} = 200$ Oe Remanent Magnetization $M_{\rm REM} = 0.2$ $\mu_{\rm B}$

M=Co

Transition temperature $T_{\rm N} = 2.6$ K Weiss temperature $\Theta = -2.3$ K Coercive foerce $H_{\rm C} = 10$ Oe Remanent Magnetization $M_{\rm REM} = 0.01$ $\mu_{\rm B}$

The origin of weak-ferromagnetism

Competition of two antiferromagnetic interactions

Weak weak-ferromagnetism of Co salt

Disappearance of ferrimagnetic structure Decreasing of competition