

Chromium Acetylide Based Magnetic Materials Junichi Nishijo and Nobuyuki Nishi Institute for Molecular Science

1. Introduction: π -d system

Conductive π-electron Interact! Magnetic d-electron Large magnetoresistance

Metal-Insulator transition Fleld induced superconductivity 3. Crystal structure of [CrCyclam(C=CMeEDT)₂][X]₂(PhCl)₂(MeCN) (same crystal structure regardless of anion X = [ClO₄]⁻, [BF₄]⁻)

However, most of the π -d interaction is quite weak...

Why weak?

Magnetic d-electrons and conductive π -electrons are placed on distant molecules.

Integrate the π - and d-electrons into a molecule!

2. Cromium-Acetylide-TTF complex

(i)TMS-C≡C-H, Pd(PPh₃)₄, Cul, THF. (ii) KF, THF + MeOH. (iii) LDA, [CrCyclam(OTf)₂]OTf, THF.

Stable complex
Redox active TTF-type ligand
Strong intra-molecular interaction (oxidation state)

· Two reversible oxidation peaks $\rightarrow 1^{st}$ and 2^{nd} oxidation of TTF

Crystal growth of radical cation salts: Standard galvanostatic oxidation inPhCl + MeCN (1:1) solution of Bu₄NClO₄ or Bu₄NBF₄.

5. Conclusion

4. Magnetic properties

The first step toward the strongly interacted π -d system

We successfully synthesized a new complex with TTF ligand. In the crystals obtained by electrochemical oxidation;

- TTF backbones form mixed valence dimer (S = 1/2)
- The complex forms 1D ferrimagnetic chain with

strong intra-chain interaction ($2J \sim -30$ K)

Weakferromagnetic transition $T_{N} = 23 \text{ K}$

The strong intra-molecular π -d interaction of Chromium-Acetylide-TTF type complex is promising for constructing novel π -d systems.